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The construction of a theory of cylindrical and spherical diodes
during emission, limited to the space charge, was begun in [1-3]. The
cycle of papers which followed upon these investigated the various
modes which could be realized in these devices. The solution was ob-
tained either by expansion in series, in which some function of the ra-
dius served as the expansion parameter, or by numerical integration of
the beam equation; for the spherical diode the solution was given by the
Airy functions. Recurrence relations are given in [4,5] for the expan-
sion coefficients for any parameter in which the expansion is carried
out, and for arbitrary geometry. However, the approach which was
used in the above-mentioned papers gave rise to weli-known difficul-
ties in determining the time of flight of the particles. These difficul-
ties were removed by the introduction of a time formalism, first sug-
gested in [6] and used in[7,8] to study cylindrical and spherical diodes
in the mode of total space charge. An analogous problem is solved be-
low under arbitrary emission conditions, and the recurrence relations
for the series coefficients are given. The tensor form of the beam equa-
tion leaves us free to choose the parameter to be used in the expansion
for the time of flight.

§1. The radial motion of charges having the same value and sign
of specific charge 7 in the space between the coaxial cylinders or be-
tween the concentric spheres, is described by a system of equations
which in tensor notation have the form
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Here v' is the contravariant component of the velocity, ¢ is the
scalar potential, p is the space charge density, and J = const is the den-
sity of the emission current. The symbol g denotes the radial part of
the determinant of the metric tensor g;), and x is some function of the
radius such that x = 0 at the emitter. Equation (1.1) is written in terms
of the dimensionless variables ro, vn, 900, p0 (r° and v* are the moduli of
the radius vector and the velocity vector):
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in which the symbol of a dimensionless quantity was omitted; ¢ and U
are constants, having the dimensions of length and velocity, respectively
It is convenient to choose for g the radius of the emitter. The intro-

duction of the time formalism
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permits us to reduce system (1.1) to the single equation
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Here g = (gn)l/ Zd¢/dx = const is the electric field at the emitter.
We shall write out below the solutions of Eq. (1.2) for cylindrical and
spherical diodes (where x is taken to be simply the radius) under ar-
bitrary emission conditions.

For a cylindrical diode x=R -1, g =1, (g)l/2 =R, by=¢p=
=1, and Eq. (1.2) takes the form

RR” = Jt + e. (1.3)
We shall write the solution of Eq. (1.3) in series form:

R=at® (k=0,1,...), (L.4)

the coefficients of which must obey the recurrence relation
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Here §45= 0 when a=s and § ;o= 1 when g =s. Noting that R=1
and R’ =vy att =0, we obtain o =1, oy =vy, where vg is the parti-
cle velocity at the emitter. Let us write out a few terms of the expan~
sion (1.4):
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For a sphericaldiode x=1 -1, gy =1, (@2 =+*, b= =1,
and 1(t) satisfies the equation
T =Jt+e. (1.7
The solution of Eq. (1.7) is given by a series

r=p (k=0,1,..) (1.8)

with coefficients determined by recurrence relations of the form
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Using Eq. (1.9), we obtain
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It is interesting to note that Eqs. (1.6) and (1.10) are correct under
arbitrary conditions at the emitter surface. The special cases of these
formulas are the expressions given in [7,8]. Note also that Eqs. (1.6)
and (1.10) can be used to determine the radius corresponding to a given
time of flight t. We shall consider below the problem of finding the
explicit dependence of t = t(x).
§2. The inversion of Eq. (1.2) with the help of the relation x” =
= = t"/t" leads to the following result:
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There are now three cases which must be investigated: emission in
the p-mode (& = 0,vy = 0), emission in the T-mode (g #0,vy = 0), and
emission with a nonzero initial velocity (v, # 0).

Since we propose to find a solution of Eq. (2.1) in the form of a
series in x™, let us similarly represent the functions (g)'/2 and(g)lﬂ X
X d in gy/dx, which carry information about the system of coordinates
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being used for the analysis:
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For emission in the p-mode, we seek a solution of Eq. (2.1) in the
series form

t=db (e  (k=01,...). (2.3)

For the determination of the coefficients T, We then obtain
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We note that all coefficients with negative indices, as well as the
sum from a to b when a > b, are equal to zero by definition. Using
Egq. (2.4), we obtain for the time of flight
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Here T is the total curvature of the emitting surface, equal to the
“sum of the principal curvatures, and T? is its radial derivative at x =
= 0 (for the cylinder, T = ~1/R, and for the sphere, T = -2/R).

For emission in the T-mode we shall constuct an expansion in half-
integral powers of x:
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The coefficients in Eq. (2.6) satisfy the recurrence relations
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Let us write out the first few coefficients of the expansion, as de-
termined from these formulas:
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It remains only to examine the case of nonzero emission velocity,
when the solution of Eq. (2.1) is written in the form

t=1, 2t (h=0,1,...). (2.9)

For the coefficients ) We obtain
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Using Eq. (2.10), we find that
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For the function x in Egs. (2.9), (2.8), and (2.11) we can use R ~
-1, nR, 1 — 1/R, and so on.
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