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The construction of a theory of cylindrical and spherical diodes 

during emission, limited to the space charge, was begun in [1-3]. The 

cycle of papers which followed upon these investigated the various 

modes which could be realized in these devices. The solution was ob- 
tained either by expansion in series, in which some function of the ra- 

dius served as the expansion parameter, or by numerical integration of 

the beam equation; for the spherical diode the solution was given by the 

Airy functions. Recurrence relations are given in [4, 5] for the expan- 

sion coeff ic ients  for any paramete r  in which the expansion is c a rded  

out, and for arbitrary geomet ry .  However, the approach which was 

used in the above -men t ioned  papers gave  rise to we l l -known d i f f icu l -  

t i e s  in de te rmin ing  the t i m e  of f l ight  of the par t ic les .  These d i f f icu l -  
t ies  were removed  by the in t roduct ion of a t i m e  formal i sm,  first sug- 

gested in  [6] and used in [7 ,8]  to study cy l ind r i ca l  and spher ical  diodes 

in the mode  of to ta l  space charge.  An analogous problem is solved be -  

low under arbitrary emiss ion condit ions,  and the recurrence  re la t ions  

for the series coef f ic ien ts  are g iven.  The tensor form of the beam equa-  
tion leaves  us free to choose the paramete r  to be used in the expansion 
for the t i m e  of f l ight .  

w The r ad ia l  mot ion  of charges  having the same va lue  and sign 

of speci f ic  charge  ~ in the space be tween the coax i a l  cyl inders  or be -  

tween  the concent r ic  spheres, is described by a system of equat ions 

which in tensor notat ion have  the  form 

the  coeff ic ients  of which must  obey the recurrence re la t ion  

(1 + t) (l + 2) ~+~%_~ --/6~s -- s60~ = 0 
1=0 

(s = 0, t . . . .  ) .  (1.5) 

Here 6 as = 0 when a 4 = s and 6 as = 1 when a = s. Noting tha t  R = 1 
and R" = vo at  t = 0, we obtain c% = 1, ct I = v0, where v0 is the par t i -  

c l e  ve loc i ty  a t  the emi t t e r .  Let us write out a few terms of the  expan-  

sion (1.4): 

B = t + v o t + 2 1 2 s t  ~ + ~ l ~ ( J - s v e )  t ~ -  

- -  V~2 [V~ e ~ -~- vo (J  - -  sv0)] : -- 

-- 2/20 [~/a eY - -  7/~ s~co __ v2o ( y  __ evo)]  t ~ - -  

- -  1/3 0 [__7/2a ~3 -~ 23/22 ~2U2 e - -  

_ 2.1~ e Y v o + l / ~  j 2 + v 0 3 ( y _  e v o ) ] t  ~ +  . . . .  (1.6) 

For a spher ica l  d iode  x = r - 1, g n  = 1, (g)~/s = r s ,  b0 = co = 1, 

and r(t) sat isf ies the equa t ion  

r~r "" = J t  + a.  (1.7) 

dv i i d ln gn l 1~2 ~li dq~ 
v2 ~ +. ~ -  dx ~ v , -= s dz ' 

]/-g pv 1 = Jg22 (0) ga3 (0), t f ~  dx ]/'~- g22 = p. (1.1) 

Here v r is the con t ravar ian t  component  of the  ve loc i ty ,  r is the 

scalar  po ten t ia l ,  p is the  space charge  density,  and l = const is the  den-  

sity of the emiss ion  current .  The symbol  g denotes the r ad i a l  part  of 

the de t e rminan t  of the m e t r i c  tensor gik,  and x is some function of the 

radius such tha t  x = 0 at  the emi t t e r .  Equation ( t .1)  is wri t ten in  terms 
of the d imensionless  var iab les  r ~ @, ~o ~ p0 (r0 and v ~ are the modul i  of 

the radius vector  and the ve loc i ty  vector):  

U s . U ~ 

r = a r  ~ v = U v  ~ cp~---~--~ ~ p = ~ p ~  

in which the symbol  of a d imensionless  quant i ty  was omit ted;  a and U 

are constants,  h a v i n g t h e  dimensions of length  and ve loc i ty ,  r e spec t ive ly  

It is conven ien t  to choose for a the  radius of the emi t t e r .  The intro-  

duct ion  of the t i m e  fo rmal i sm 

d t d 
d x -  v 2 dt 

permits  us to reduce system (1.1) to the  s ingle  equa t ion  

t d l n g 2 2  .2~ " 1/ 
V ' - g ( x " q -  2 -c[:[ x ]=(J t - [ - s )bo"Co  :,  

b0 = g,~ (0), co = gas (0). (1.2) 

Here a = (gn)~ /Zdq /dx  = const is the e l ec t r i c  f ie ld  a t  the e m i t t e r .  
We shal l  wri te  out be low the solutions of Eq. (1.2) for cy l ind r i ca l  and 

spher ica l  diodes (where x is t aken  to be s imply the radius) under ar-  
b i t ra ry  emiss ion  condi t ions.  

For a cy l ind r i ca l  d iode  x = R - 1, g n  = 1, (g)~/z = R, b 0 = c o = 
= 1, and Eq. (1.2) t akes  the  form 

RR'" = J t  -i- e. (1.3) 

We sha l l  wri te  the  solut ion of Eq. (1.3) in series form: 

R = a~ t  ~ (k = 0 ,  t . . . .  ), ( 1 . 4 )  

The solut ion of Eq. (1.7) is  g i v e n  by a series 

r = ~ t  ~ (k=O,i,..i) (1.8) 

with coeff ic ients  de te rmined  by recurrence relat ions of the form 

~ ( l  + i )  (l + 2) ~l+~%-t - -  J61~-- e6o~ = 0 (s = 0, t . . . .  ), 
l=0 k 

~ = ~ + 2 ~ ~t-i~-l+~, z2~+l = 2 ~ ~t~-t+t �9 (1.9) 
/=1 /=O 

Using Eq. (1.9), we obta in  

r = t -4- rot -~ x/2 et 2 -t- 2/e (o r - -  2 eve) t s - -  

--2122 [e 2 -t- v0 (2J  - -  3 evo)] I 4 - -  

- -  2/2014/8 e J - -  n/s 82re - -  ve 2 (3J - -  4 evo)] t 5 - -  

- -  1/3o [--hA2 e 3 q- 27/2 e~ve 2 - -5  e Jvo + 

q -  2/~ j 2  q -  ve 3 ( 4 J  - -  5 eve)]  t 6 q -  . . . .  (1.1o) 

It is in teres t ing to note  tha t  Eqs. (1.6) and (1.10) are correct  under 

arbitrary condit ions at  the emi t t e r  surface. The spec i a l  cases of these 

formulas  are the  expressions g i v e n  in [7, 8 ] .  Note also that  Eqs. (1.6) 

and (1.10) can  be used to de t e rmine  the radius corresponding to a g iven  

t i m e  of f l igh t  t. We sha l l  consider below the  problem of f inding the 

e x p l i c i t  dependence  of t = t(x). 

w The inversion of Eq. (1.2) with the  he lp  of the  r e l a t ion  x" = 
= - t " / t  's leads to the  fol lowing result: 

I d I n  gll  t, ~ _~ bo*/,c~/, (./t -]- e) t 's = 0 .  (2 .1)  r  (t" - - E  ---EE---~ / 

There  are now three cases which must  be inves t iga ted:  emiss ion in  

the p - m o d e  ( s  = 0,v0 = 0), emiss ion  in  the  T - m o d e  (6 ~ 0,v0 = 0), and 
emiss ion with a nonzero i n i t i a l  ve loc i ty  (v 0 ~ 0). 

Since we propose to find a solut ion of Eq. (2.1) ill  the  form of a 

series in  x ~ , l e t  us s imi la r ly  represent  the functions (g) l /z  and (g)l/z x 

x d in  g t t / dx ,  which earry in format ion  about  the system of  coordinates  
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being used for the analysis:  

~ F  = G ~  ~, 1/}- e ~n gr~ I a~ = G ~  ~ 

gu = % z  ~ (k = O, 1 . . . .  ). (2.2) 

For emiss ion in the  p-mode ,  we seek a solution of Eq. (2.1) in the 
series form 

t = Jh (~- z~)  (k = O, 1 . . . .  ) .  ( 2 . 3 )  

Let us write out the first few coeff ic ients  of the expansion,  as de -  
t e rmined  from these formulas:  

/ 2 \ ' / '  ,,o 1 Y 
t=\-W) = , - - T W = +  

e I ~'-8"- ao~/-''; - -  ~ T + ~ "~-) -- 

i a~ Y t Y 7 j a ,  
+ - -  12 ao',~ ~ + 3-~ ~ - r - - ~ - - - ~ - ) ~  + . . . .  (2 . s )  

For the determination of the coeff ic ients  r k we then obtain 

l y [ ( k +  l 2 

l -1  
1 l .~ = 

k = 0  

s s 

s 

(2.-, § 

"r2s+l = 2  l + + )  2 s ~ - I  + "-~-)'r 
l~O 

It r emains  only to e x a m i n e  the case of nonzero emiss ion  ve loc i ty ,  

when the solut ion of Eq. (2.1) is writ ten in the form 

We note  tha t  a l l  coef f ic ien ts  with nega t ive  indices ,  as wel l  as the 

sum from a to b when a > b, are equa l  to zero by def ini t ion.  Using 

Eq. (2.4), we obtain for the t i m e  of f l ight  

' 6"' / ' ,  [ ~ _  a~ i T) s +  
t = l - j ' -  ) s / ' [ l + \ l  2 ao.l,---{-~ 

+ ~ 8  ao ~ -  48 ao ~ -  

t al "- t 1 
- -  - -~  - ~  T + ~ T~ - -  " ~  T s '  ) S2 + . . . ] , s = a o  % x .  (2.5) 

Here T is the  t o t a l  curvature  of the emi t t ing  surface, equa l  to the 

sum of the p r inc ipa l  curvatures,  and T~ is its r ad ia l  de r iva t ive  at x = 

= 0 (for the  cyl inder ,  T = - l / R ,  and for the sphere, T = -2 /R) .  

For emiss ion  in  the T - m o d e  we shal l  construct  an e x p a m i o n  in ha l f -  

in tegra l  powers of x: 

t = ~ x  '/'-~ (~ = t ,  2 . . . .  ). (2.6) 

The coeff ic ien ts  in  Eq. (2.6) satisfy the recurrence relat ions 

t 1-2  

~-- ~ kl~kA~/~(l-k_2) @ 
k=l .  k = l  

t 

l+ l  

k=2 

(1 = 1, 2 . . . .  ), 

~ s  = "l:~ ~ + 2 2 "~i g2s-! , ~2s+1 = 2 "g/ 'g2s- i+l '  
l= l  1=1 

, , = ( ~ - s % )  + ' =~ 

s 
1 

Tes+i = "-2- ~ l (23 - -  l + t )  xtT~s_t+i - 
l = 1  

t = % x  ~ ( k = 0 , 1  . . . .  ) . 

For the coeff ic ients  r k we obtain 

/+2 l+l 
I 

k ~  k=l 

l+1 

k ~ 2  

/+2 

+ 8 ~ ,  ( / - - k + 3 ) , k ~ _ ~ + s  bo Co = 0  ( l = 0 ,  t . . . .  ), 
J k = 2  

Y ~ ~2s = "~s 2 @ 2 "r'lT2s-I , P2s+l - -  TIT2s-?~ 1 ' 

s -1  
(2.4) 

~ = (sG)2 + 2 ~ l (23 - -  l) *z*2~-t , 
/ = 1  

~r~+l = 2 ~ l (23 - -  l + 1) ~lr2~_l§ 
l = 1  

(2.9) 

(2.7) 

Using Eq. (2.10), we find that  

\, I t al t e )s~4- 
t =  ~To~+ ~ 0  ao~--/, - 2 v0 ~ 

t a 2 t 31 ~ I a as 
+ 67"0 a J -  24v0 ao 3 - -  4 va 3 ao% 

(2.1o) 

t e T t J , t 32~ 
- ~  ~o ~ ~-- vo~ -t- T ~ - o 5  j s~ + . . . .  (2.11) 

For the funct ion x in Eqs. (2.5), (2.8), and (2.11) we can use R - 

- 1, In R, 1 -- l / R ,  and so on. 
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